Федеральное государственное бюджетное учреждение науки Институт физических проблем им. П.Л. Капицы Российской академии наук

На правах рукописи

УДК 538.941

Doug

Солдатов Аркадий Александрович

Полярная фаза ³Не в нематическом аэрогеле

Специальность 01.04.09 — физика низких температур

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата физико-математических наук

Москва – 2019

Работа выполнена в Институте физических проблем им. П.Л. Капицы РАН.

Научный руководитель:	доктор физмат. наук, академик				
	Дмитриев Владимир Владимирович				
Официальные оппоненты:	доктор физмат. наук,				
	профессор Казанского (Приволжского)				
	федерального университета				
	Тагиров Мурат Салихович				
	доктор физмат. наук,				
	заведующий лабораторией Института				
	физики твердого тела РАН				
	Рязанов Валерий Владимирович				
Ведущая организация:	Институт теоретической физики				
	им. Л.Д. Ландау РАН				

Защита состоится 26 июня 2019 года в 14:00 на заседании диссертационного совета Д 002.103.01 при Институте физических проблем им. П.Л. Капицы РАН, расположенном по адресу: 119334, г. Москва, ул. Косыгина 2.

С диссертацией можно ознакомиться в библиотеке Института физических проблем им. П.Л. Капицы РАН и на сайте института www.kapitza.ras.ru.

Автореферат разослан «____» ____ 2019 года.

Ученый секретарь диссертационного совета, кандидат физ.-мат. наук

Allow,

А.Н. Юдин

Общая характеристика работы

Актуальность работы. Степень разработанности.

Сверхтекучесть ³Не была открыта в 1972 г. и объясняется бозеэйнштейновской конденсацией куперовских пар с орбитальным моментом и спином пары, равными 1, что приводит к сложному устройству параметра порядка и разнообразию свойств сверхтекучего состояния. Такое нестандартное (триплетное, p-wave) куперовское спаривание также происходит в ряде других систем фермионов (некоторых квантовых газах и экзотических) сверхпроводниках). Сверхтекучий ³Не является идеальным модельным объектом для исследований влияния примесей на такие системы: его Ферми поверхность имеет вид сферы, его сверхтекучие фазы А и В (описываемые моделями Андерсона-Бринкмана-Мореля и Бальяна-Вертхамера соответственно) хорошо изучены, а сверхтекучую длину когерентности можно менять в широких пределах ($\xi_0 = 20-80$ нм), изменяя давление. Особый интерес представляет изучение влияния примесей на такую идеальную систему. Несмотря на то, что при сверхнизких температурах (~1 мК) жидкий 3 Не является абсолютно чистым веществом (все примеси в нем вымерзают, а изотоп 4 Не уже практически не растворяется в 3 Не), в него удается внести примеси с помощью высокопористых наноструктур (например, аэрогелей). Аэрогель представляет собой жесткий каркас из тонких нитей, пористость которого может достигать 99%. До недавнего времени для экспериментов с ³Не использовались аэрогели на основе SiO_2 (кремниевые аэрогели), синтезированные по золь-гель технологии. Нити таких аэрогелей имеют диаметр ≈ 3 нм, а характерное расстояние между ними составляет ~ 100 нм. Таким образом, нити аэрогеля играют роль протяженных примесей. Большинство образцов кремниевых аэрогелей близки к изотропным, и эксперименты показывают, что область существования сверхтекучести ³Не в таких аэрогелях уменьшается [1,2]. При этом наблюдаются 2 сверхтекучие фазы (А-подобная и В-подобная), аналогичные А и В фазам объемного ³Не. Установлено также, что небольшая глобальная анизотропия аэрогеля (созданная в процессе синтеза образца или при механической деформации) оказывает ориентирующее влияние на параметры порядка наблюдаемых фаз, но природа фаз остается прежней [3,4].

Теоретические исследования [5,6] показали, что ситуация может принципиально измениться при использовании сильно анизотропных аэрогелей. В случае, когда нити аэрогеля ориентированы преимущественно вдоль одного направления, вместо А и В фаз могут стать выгодными новые сверхтекучие фазы: полярная фаза, полярноискаженная А фаза и полярноискаженная В фаза. Сверхтекучая щель полярной фазы обращается в нуль не в двух полюсах, как в А фазе и полярноискаженной А фазе, а на экваторе, что должно привести к ряду новых явлений в физике конденсированного состояния. Полярноискаженные А и В фазы были обнаружены [7,8] и детально исследованы [9] в экспериментах с нематическими аэрогелями, полученными в Физико-энергетическом Институте им. А.И. Лейпунского (г. Обнинск) методом селективного окисления бинарного металлического расплава Ga-Al. Этот аэрогель состоит из нитей, ориентированных параллельно друг другу (отсюда и название аэрогеля – "нематический") и состоящих из аморфного AlOOH. Величина глобальной анизотропии такого "обнинского аэрогеля" [10] оказалась все же недостаточной для обнаружения топологически новой сверхтекучей фазы ³Не – полярной фазы [9].

Цели и задачи. Методы.

Целью данной работы является экспериментальное исследование жидкого нормального и сверхтекучего ³Не в новом наноматериале, который производит фирма ANF Technology Ltd. (Таллин, Эстония), – нафене. Нафен – это нематический аэрогель, нити которого состоят из кристаллического Al₂O₃ и не обрываются на макроскопических расстояниях (~ 1 см). В экспериментах используются образцы нафена различной пористости (93.9– 98.2%). Основным инструментом экспериментального исследования является метод непрерывного и импульсного ядерного магнитного резонанса (ЯМР), применяемый в широкой области низких температур (1–60 мК), магнитных полей (20–370 Э), соответствующих частот ЯМР (80–1200 кГц) и давлений (0–29.3 бар). В экспериментах по спиновой диффузии в нормальном ³Не в нафене удается также измерить степень глобальной анизотропии образцов нафена.

Научная новизна. Значимость.

В данной работе впервые были исследованы свойства жидкого нормального и сверхтекучего ³Не в нафене. Измерения спиновой диффузии в нормальной фазе ³Не в нафене показали, что образцы нафена являются более анизотропными, чем образцы обнинского аэрогеля. Были измерены фазовые диаграммы сверхтекучего ³Не в образцах нафена, сильно различающихся по плотности (пористости). Измерения проводились при использовании разных граничных условий для рассеяния квазичастиц ³He: как в случае с предварительным покрытием нитей нафена несколькими атомными слоями ⁴He, так и в случае чистого ³He. С помощью методик непрерывного и импульсного ЯМР удалось провести идентификацию наблюдаемых сверхтекучих фаз. Оказалось, что в образцах нафена сверхтекучий переход происходит в новую, ранее не наблюдавшуюся фазу – полярную фазу. Область существования полярной фазы в нафене тем больше, чем выше плотность (ниже пористость) используемого образца нафена. Также установлено, что граничные условия на нитях нафена играют важную роль для реализации полярной фазы ³He. Обнаружено, что в экспериментах с чистым ³Не реализуется либо А фаза, либо полярноискаженная А фаза, вместо полярной. При этом наблюдается заметное подавление температуры сверхтекучего перехода по сравнению со случаем предварительного покрытия нитей ⁴He.

Апробация работы.

Изложенные в диссертации результаты докладывались на:

- Международных симпозиумах по квантовым жидкостям и кристаллам (Quantum Fluids and Solids) QFS2015 (август 2015, Ниагара-Фолс, США), QFS2016 (август 2016, Прага, Чехия), QFS2018 (июль 2018, Токио, Япония).
- Международных конференциях по низким температурам (Low Temperature) LT27 (август 2014, Буэнос-Айрес, Аргентина), LT28 (август 2017, Гетеборг, Швеция).
- Международных симпозиумах по сверхнизким температурам (Ultra Low Temperature) ULT2014 (август 2014, Сан Карлос де Барилоче, Аргентина), ULT2017 (август 2017, Хайдельберг, Германия).
- Всероссийских совещаниях по физике низких температур (Низкие Температуры) НТ37 (июнь-июль 2015, Казань, Россия), НТ38 (сентябрь 2018, Шепси, Россия).
- XVIII международной молодежной научной школе "Актуальные проблемы магнитного резонанса и его применение" (октябрь 2015, Казань, Россия).
- На 57-ой (ноябрь 2014, Москва, Россия), 58-ой (ноябрь 2015, Москва, Россия), 59-ой (ноябрь 2016, Москва, Россия) научных конференциях МФТИ с международным участием.
- Семинарах и ученых советах ИФП им. П.Л. Капицы РАН.

По материалам диссертации опубликовано 3 статьи [А1–А3].

Структура и объем диссертации.

Диссертация состоит из введения, 5 глав и заключения. Полный объем диссертации составляет 86 страниц и включает в себя основной текст, 32 рисунка, 2 таблицы, список публикаций и список литературы.

Содержание работы

Во <u>введении</u> обосновывается актуальность исследования и степень ее разработанности, сформулированы цели и задачи работы, методология, также обоснована научная новизна, значимость результатов и апробация работы, приведено краткое содержание диссертации по главам.

В <u>первой главе</u> приведен краткий обзор основных представлений об исследуемом объекте – сверхтекучем ³He. Рассмотрены параметры порядка сверхтекучих фаз и способ их описания через орбитальный и спиновый вектора, дипольная энергия, основные уравнения спиновой динамики. Приведены фазовые диаграммы ³He в объеме и в кремниевом аэрогеле.

Также рассмотрена спиновая динамика A, полярноискаженной A и полярной фаз ³He в нематическом аэрогеле. Эти фазы принадлежат к классу Equal Spin Pairing (ESP), магнитная восприимчивость которых равна ее значению в нормальной фазе, в отличие от B и полярноискаженной B фаз, где магнитная восприимчивость меньше. В диссертации подробно изучаются свойства ESP фаз в аэрогеле, а B фаза рассматриваться не будет. Общая форма записи параметра порядка для полярной, полярноискаженной A и чистой A фаз имеет вид:

$$A_{\nu j} = \Delta_0 e^{i\phi} d_\nu \left(am_j + ibn_j\right),\tag{1}$$

где Δ_0 – параметр сверхтекучей щели, $e^{i\phi}$ – фазовый множитель, **d** – единичный спиновый вектор, **m** и **n** – взаимно ортогональные единичные вектора в орбитальном пространстве, $a^2 + b^2 = 1$. Для A фазы a = b, для полярноиска-

Рис. 1: Сверхтекучая щель в (а) A фазе, (b) полярноискаженной A фазе с $b^2 = 0.1$ и (c) полярной фазе.

женной A фазы $a^2 > 1/2 > b^2$, для полярной фазы a = 1, b = 0. Аналогично чистой A фазе, полярноискаженная A фаза обладает хиральностью, и мы можем ввести для нее орбитальный вектор $\boldsymbol{\ell} = (\mathbf{m} \times \mathbf{n})$. Ее щель обращается в 0 вдоль $\boldsymbol{\ell}$, равна $\sqrt{2}a\Delta_0$ и $\sqrt{2}b\Delta_0$ вдоль \mathbf{m} и \mathbf{n} соответственно (см. Рис. 1). Для всех фаз щель максимальна вдоль \mathbf{m} , и в случае ³Не в нематическом аэрогеле вектор \mathbf{m} согласно теории должен быть ориентирован вдоль нитей [5]. В полярной фазе щель максимальна в направлении нитей и обращается в 0 на окружности, перпендикулярной нитям, в отличие от A и полярноискаженной A фаз, где она обращается в 0 только в двух точках. Таким образом, такая особая симметрия полярной фазы ближе всего подходит для ³Не в аэрогеле, состоящего из параллельных нитей.

Следует отметить, что в A и полярноискаженной A фазах в нематическом аэрогеле вектора **n** остаются однородными только на малых масштабах длин $L_{LIM} \sim 1$ мкм, определяемых балансом между градиентной энергией конденсата и случайной силой, индуцированной нитями аэрогеля [11]. На бо́льших расстояниях образуется так называемое двумерное состояние Ларкина-Имри-Ма (Larkin-Imry-Ma, LIM), которое соответствует случайному распределению векторов **n** в плоскости, перпендикулярной нитям [7,9]. Спиновый вектор **d** ориентируется ортогонально намагниченности **М** и должен быть однороден на расстояниях меньше, чем дипольная длина $\xi_D \sim 10$ мкм, который определяется балансом между дипольной и градиентной энергиями. Кроме этого, вектор **d** в ESP фазах может быть либо пространственно однороден (состояние "спиновый нематик", spin nematic, SN), либо случайным (состояние "спиновое стекло", spin glass, SG) [4]. Состояние SN более выгодно и соответствует пространственно однородному распределению вектора **d**, в то время как состояние SG можно создать, охлаждаясь из нормальной фазы через температуру сверхтекучего перехода ³Не в аэрогеле (T_{ca}), либо в импульсном ЯМР, генерируя радиочастотные импульсы, отклоняющие **M** на большие углы, либо в непрерывном ЯМР с большой накачкой. Состояние SG метастабильно, соответствует локальному минимуму суммы градиентной, дипольной и магнитной энергий и стабилизируется неоднородным полем векторов **n**. В этом случае **d** однороден только на расстояниях $\leq \xi_D$.

Свойства ЯМР сверхтекучих фаз ³Не характеризуются сдвигом частоты ($\Delta \omega$) от ларморовского значения ($\omega_L = \chi H$), где χ – магнитная восприимчивость ³Не, **H** – внешнее магнитное поле. Сдвиг возникает вследствие дипольного взаимодействия спинов в сверхтекучем конденсате и зависит от вида параметра порядка. В рассматриваемых ESP фазах в состоянии SN сдвиг в приближении слабой связи, то есть в случае $T_c/T_F \ll 1$, где T_c – температура сверхтекучего перехода в объемном ³Не и T_F – температура Ферми, задается уравнением:

$$2\omega_L \Delta \omega = K \left[\cos \beta - \frac{\sin^2 \mu}{4} \left(5 \cos \beta - 1 \right) \right] \Omega_A^2, \tag{2}$$

где μ – угол отклонения **H** от направления нитей ζ , β – угол отклонения **M** от равновесия,

$$K = \frac{4 - 6b^2}{3 - 4a^2b^2},\tag{3}$$

и $\Omega_A = \Omega_A(P,T) \propto \Delta_0$ – леггеттовская частота A фазы (если бы она существовала в аэрогеле и имела ту же самую температуру сверхтекучего перехода T_{ca}). В линейном непрерывном ЯМР (соз $\beta \approx 1$) для $\mu = 0$ (**H** || ζ):

$$2\omega_L \Delta \omega = K \Omega_A^2 > 0, \tag{4}$$

в то время как для $\mu = \pi/2$ сдвиг равен 0. Из уравнений (3) и (4) следует, что если известно Ω_A , то измерения $\Delta \omega$ при $\mu = 0$ позволяют определить величину полярного искажения: в A фазе K = 1/2, а в полярной фазе K = 4/3.

Сдвиг частоты непрерывного ЯМР в состоянии SG для $\mu = 0$ не отличается от случая SN состояния, но для $\mu = \pi/2$ он отрицателен и равен:

$$-K\Omega_A^2 \lesssim 2\omega\Delta\omega < 0,\tag{5}$$

Заметим, что параметр порядка полярной фазы не содержит вектора **n** $(b^2 = 0 \text{ B} (1))$. По этой причине состояние SG в полярной фазе не может стабилизироваться, а для $\mu = \pi/2$ сдвиг должен всегда равняться 0. Таким образом, наличие отрицательного сдвига в поперечном поле $(\mu = \pi/2)$ является признаком SG состояния и указывает на то, что наблюдаемая сверхтекучая фаза ³Не не является чистой полярной.

Во <u>второй главе</u> описывается экспериментальная установка и особенности работы при сверхнизких температурах. Милликельвиновые температуры жидкого ³He достигаются с помощью криостата ядерного размагничивания ИФП РАН [12,13]. В качестве предварительной ступени охлаждения используется криостат растворения ³He в ⁴He, построенный по классической схеме, который позволяет получать температуру до ≈ 15 мK. Также рассмотрен полный цикл ядерного размагничивания, даны схемы спектрометров непрерывного и импульсного ЯМР, описаны принципы их работы.

Рис. 2: Упрощенная схема экспериментальной камеры: С – капилляр заполнения, F – кварцевый резонатор, H – нагреватель, S – образцы аэрогеля в ячейках, E – теплообменник, K – катушки ЯМР.

Исследуемый жидкий ³Не находится в экспериментальной камере, который устанавливается на фланце ядерной ступени (Рис. 2). В верхнюю часть фланца вклеена цилиндрическая камера, изготовленная из эпоксидной смолы Stycast 1266. В камере находятся стандартный кварцевый резонатор F с длиной ножек ≈ 3.1 мм ("вилка", quartz tuning fork), служащий вторичным термометром [14], и нагреватель из манганиновой проволоки H, с помощью которого можно изменять температуру в экспериментальной камере требуемым образом. Возможность перегреть ³Не относительно ступени обеспечивается скачком Капицы. Основная камера, содержащая термометр и нагреватель, соединяется с экспериментальными ячейками узкими кана-

Рис. 3: Фотографии поверхности образцов, полученные методом сканирующей электронной микроскопии: (a) образец обнинского аэрогеля плотностью 30 мг/см³ ("Обнинск-30"), (b) нафен-90.

лами. Образцы аэрогеля S, которые помещаются в ячейки свободно, имеют обычно форму прямоугольного параллелепипеда с характерными размерами $\approx 3-5$ мм. Экспериментальная камера также имеет дополнительную ячейку (на Рис. 2 не показана), которая используется для калибровки вилки. Под действием внешней накачки вилка совершает колебания, затухающие главным образом из-за вязкости ³He, которая сильно меняется в интересующей нас области температур. Это свойство делает ее хорошим вторичным термометром. Резонанс вилки наблюдается на частоте около 31.8 кГц, а его ширина меняется в широких пределах от 40 до 3000 Гц в зависимости от степени покрытия пленкой ⁴He, давления и температуры в камере.

Эксперименты проводились как с чистым ³He, так и в присутствии небольшого количества ⁴He. В первом случае все объекты, граничащие с ³He, покрываются ~ 2 атомными слоями парамагнитного твердого ³He, в результате чего рассеяние квазичастиц ³He на поверхности оказывается полностью диффузным и не сохраняет спин из-за процессов быстрого обмена между спинами жидкого и твердого ³He. Для изменения граничных условий для рассеяния квазичастиц ³He добавлялся ⁴He, который замещает твердый ³He и покрывает поверхности ≈ 2.5 атомными слоями. В этом случае спин при рассеянии сохраняется. При покрытии $\gtrsim 2.5$ монослоями рассеяние близко к зеркальному при давлениях $\lesssim 15$ бар и становится полностью диффузным при ≈ 25 бар, когда пленка ⁴He затвердевает.

В диссертации ³Не исследовался в пяти образцах нематического аэрогеля (см. Рис. 3), отличающихся по плотности:

1) обнинский аэрогель плотностью 8 мг/см³ ("Обнинск-8");

- 2) обнинский аэрогель плотностью 50 мг/см³ ("Обнинск-50");
- 3) нафен плотностью 90 мг/см³ (опытный образец, "нафен-90");
- 4) нафен плотностью 243 мг/см³ (опытный образец, "нафен-243");

5) нафен плотностью $72 \,\mathrm{mr/cm^3}$ (коммерческий, "нафен-72").

Основная часть результатов была получена с использованием образцов нафена. Характеристики образцов аэрогеля, взятые из [15], для наглядности сведены в Таблицу 1.

В <u>третьей главе</u> приводятся теоретические предсказания для спиновой диффузии ³Не в нематическом аэрогеле в зависимости от граничных условий для квазичастиц ³Не на поверхности нитей, описаны эксперименты по измерению зависимостей тензора спиновой диффузии в образцах нафена от температуры, из которых делаются выводы о характере отражения квазичастиц и длинах свободного пробега внутри аэрогеля.

Важным параметром в теории сверхтекучего ³Не является длина свободного пробега (λ) квазичастиц ферми-жидкости, которая может быть определена из измерений коэффициента спиновой диффузии (D). При высоких температурах ($T \gtrsim 20 \text{ мK}$) λ и D соответствуют объемной фермижидкости ($\lambda \propto T^{-2}$ и $D \propto T^{-2}$), так как плотность квазичастиц становится Таблица 1: Свойства образцов нематического аэрогеля: ρ – плотность, $p = 1 - \rho/\rho_0$ – пористость, d – средний диаметр нитей, $\ell \approx d\sqrt{\rho_0/\rho}$ – оценочное расстояние между нитями, s_V^{exp} – площадь поверхности в единицу объема, измеренная методом БЭТ, $s_V \approx \frac{4}{d} \frac{\rho}{\rho_0}$ – расчетная площадь поверхности в единицу объема. Здесь ρ_0 – плотность материала аэрогеля (равна $2.42 \,\Gamma/\text{см}^3$ для AlOOH и $3.95 \,\Gamma/\text{сm}^3$ для Al₂O₃). Полуширина распределения по диаметрам составляет ~ 1 нм.

Образец	$\rho\left(\frac{\mathrm{M}\Gamma}{\mathrm{CM}^3}\right)$	p(%)	d (нм)	ℓ (HM)	$s_V^{exp}\left(rac{\mathrm{M}^2}{\mathrm{CM}^3} ight)$	$S_V\left(\frac{\mathrm{M}^2}{\mathrm{CM}^3}\right)$
Обнинск-8	8	99.7	6	104	1.4 ± 0.2	2.2
Обнинск-30	30	98.8	9	81	_	5.5
Обнинск-50	50	97.9	9*	63	_	9
нафен-72	72	98.2	8	59	_	9
нафен-90	90	97.8	8	53	8 ± 1	11
нафен-243	243	93.9	9	36	13 ± 2	27

*не измерялась, для оценки ℓ принята такой же, как в образце Обнинск-30

большой. При достаточно низких температурах (T < 10 мK) нити аэрогеля начинают ограничивать свободный пробег квазичастиц и спиновую диффузию. В результате при $T \sim 1 \text{ мK}$ плотность квазичастиц уже настолько мала, что значения λ и D полностью определяются системой нитей аэрогеля и не зависят от T. В пределе T = 0 глобальная анизотропия нематического аэрогеля должна приводить к анизотропии спиновой диффузии ³He.

В диссертации спиновая диффузия ³Не измерялась методом спинового эха при температурах 1.4–60 мК в двух образцах нафена: нафене-90 и нафене-243. Использовалось давление P = 2.9 бар и предварительное покрытие образцов 2.5 атомными слоями ⁴Не. Измеренные температурные зависимости D(T) для ориентаций градиента магнитного поля вдоль и поперек нитей нафена показаны на Рис. 4. Для определения коэффициента спиновой диффузии при нулевой температуре ($D \equiv D(0)$) эти зависимости

Рис. 4: Температурная зависимость главных значений тензора спиновой диффузии: (a) в нафене-90, (b) в нафене-243. Кружками показан коэффициент спиновой диффузии вдоль нитей нафена, треугольниками – поперек нитей. Сплошными кривыми показана аппроксимация точек уравнением (6), пунктирными – коэффициент спиновой диффузии в объемном ³Не при *P* = 2.9 бар.

аппроксимируются следующим уравнением:

$$D^{-1}(T) = D_b^{-1}(T) + D^{-1},$$
(6)

где $D_b \propto T^{-2}$ – коэффициент диффузии в объемном ³He, который определяется только столкновениями между квазичастицами. Эффективная длина свободного пробега в пределе нуля температур рассчитывается из:

$$D = \frac{v_F \lambda}{3} \left(1 + F_0^a \right),\tag{7}$$

где v_F – скорость Ферми, F_0^a – параметр Ландау ферми-жидкости. Результаты экспериментов сведены в Таблицу 2.

Из Таблицы 2 видно, что нафен более анизотропный, чем обнинский аэрогель. Величина анизотропии тензора спиновой диффузии в системе с идеально параллельными нитями $k \equiv D^{\parallel}/D^{\perp}$ для зеркального характера отражения квазичастиц ³Не от нитей аэрогеля по теории равна ∞ . Однако, в реальном нематическом аэрогеле нити неровные, и ожидается конечТаблица 2: Главные значения тензора спиновой диффузии вдоль (D^{\parallel}) и поперек (D^{\perp}) нитей и соответствующие эффективные длины свободного пробега при нулевой температуре $(\lambda^{\parallel} \ u \ \lambda^{\perp})$, вычисленные согласно (7), для различных образцов нематического аэрогеля. В расчетах использовались $v_F = 5397 \text{ см/с}$ и $F_0^a = -0.717$. Точность всех приведенных значений составляет $\pm 10\%$. Данные для обнинского аэрогеля взяты из [10].

Образец	$D^{\parallel}(\mathrm{cm}^2/\mathrm{c})$	$D^{\perp}(\mathrm{cm}^2/\mathrm{c})$	D^{\parallel}/D^{\perp}	λ^{\parallel} (hm)	λ^{\perp} (hm)
Обнинск-8	0.083	0.056	1.5	1600	1100
Обнинск-30	0.044	0.023	1.9	850	450
нафен-90	0.049	0.015	3.3	960	290
нафен-243	0.029	0.0036	8.1	570	70

ная величина. В случае же диффузного характера отражения квазичастиц $k \approx 3.23$. Это означает, что в условиях наших экспериментов отражение квазичастиц ³He, по крайней мере в нафене-243, близко к зеркальному [A1].

В <u>четвертой главе</u> приведены результаты экспериментов со сверхтекучим ³Не в образцах обнинского аэрогеля, нафена-90 и нафена-243 в случае предварительного покрытия нитей аэрогеля 2.5 атомными слоями ⁴Не. Построены фазовые диаграммы ³Не в соответствующих образцах и приведены доказательства существования полярной фазы в нафене.

Перед началом работы над диссертацией было известно, что в обнинском аэрогеле бо́льшую часть фазовой диаграммы занимает ESP фаза – полярноискаженная A фаза [7]. Стало понятно, что для достижения большей величины полярного искажения A фазы и стабилизации полярной фазы необходим более анизотропный нематический аэрогель. Таким аэрогелем оказался нафен. Ожидалось, что фазовая диаграмма ³Не в нафене будет состоять преимущественно из ESP фаз, поэтому их свойства изучаются в диссертации более детально. Как упоминалось в первой главе, основным способом идентификации фаз является измерение сдвига частоты ЯМР $\Delta \omega$ и сравнение его с формулами (2) и (3). Однако, леггеттовская частота измерена только в объемном ³He (мы обозначим ее Ω_{A0}). В аэрогеле Ω_A меньше из-за подавления температуры сверхтекучего перехода ($\Delta T_{ca} = T_c - T_{ca}$) и соответствующего уменьшения Δ_0 . К счастью, в наших экспериментах ΔT_{ca} мало (2–10% от T_c в зависимости от давления). Поэтому в первом приближении мы можем использовать Ω_A , полученную перемасштабированием Ω_{A0} :

$$\Omega_A\left(\frac{T}{T_{ca}}\right) = \frac{T_{ca}}{T_c} \Omega_{A0}\left(\frac{T}{T_c}\right). \tag{8}$$

Сверхтекучий ³Не в обнинском аэрогеле плотностью 30 мг/см³ был ранее исследован в работе [7], где были косвенные указания на существование полярной фазы вблизи T_{ca} . Чтобы внести ясность, проводились дополнительные эксперименты в образцах Обнинск-8 и Обнинск-50. При низких давлениях вблизи T_{ca} в этих образцах аэрогеля величина K, измеренная в непрерывном ЯМР, оказывается максимальной и равняется ≈ 1.06 и ≈ 1.07 соответственно. Более того, в обоих образцах легко создается состояние SG, и в поперечном поле ($\mu = \pi/2$) наблюдается отрицательный сдвиг частоты, который исчезает только в T_{ca} (см. текст после (5)). Этот факт доказывает, что полярная фаза все-таки не реализуется в обнинском аэрогеле.

Ситуация меняется в ³Не в нафене, где полярная фаза становится выгодной в широкой области температур и давлений (Рис. 5). Мы идентифицировали сверхтекучие фазы, основываясь на следующих аргументах:

- (i) Сверхтекучий переход происходит в фазу из класса ESP, так как ее магнитная восприимчивость не зависит от T (см. вставку на Рис. 6).
- (ii) Эксперименты по импульсному ЯМР для разных μ и β показывают, что в обоих образцах нафена спиновая динамика в ESP фазе описывается уравнением (2) (Рис. 6).

Рис. 5: Фазовые диаграммы ³Не в нафене-243 (а) и нафене-90 (b). Заполненные кружки показывают сверхтекучий переход ³Не в нафене, открытые кружки – переход между полярной и полярноискаженной A фазами, заполненные (открытые) треугольники – начало перехода в полярноискаженную В (A) фазу на охлаждении (отогреве) из полярноискаженной A (B) фазы. Ширины A-B и B-A переходов составляют $\approx 0.02T_{ca}$. Отметим, что на оси абсцисс температура нормирована на температуру сверхтекучего перехода в объемном ³He, которая меняется от 0.93 мК при P = 0 бар до 2.43 мК при P = 29.3 бар.

- (iii) В области низких давлений, где выполняется приближение слабой связи, в нафене-243 K ≈ 4/3 и практически не зависит от температуры, что соответствует полярной фазе (Рис. 7(а)).
- (iv) В области низких давлений, где выполняется приближение слабой связи, в нафене-90 $K \approx 4/3$ только в ограниченном интервале температур $T_p < T < T_{ca}$, а при дальнейшем охлаждении K падает, что означает переход в полярноискаженную A фазу, величина искажения которой уменьшается при понижении температуры, как и следует ожидать из теории [5] (Puc. 7(b)).
- (v) При всех давлениях вблизи T_{ca} значения K почти совпадают в обоих образцах нафена, несмотря на то, что они сильно различаются по плотности (см. Таблицу 1) и анизотропии спиновой диффузии (см. Таблицу 2).

Рис. 6: Зависимость сдвига частоты от угла β в ³Не в нафене-243. Заполненные кружки: $\mu = 0, P = 19.4 \,\text{бар}, \omega_L/(2\pi) = 880.5 \,\text{к}\Gamma\text{ц}, T \approx 0.78T_c$. Треугольники: $\mu = \pi/2, P = 7.1 \,\text{бар}, \omega_L/(2\pi) = 359.5 \,\text{к}\Gamma\text{ц}, T \approx 0.83T_c$. Кривые отвечают уравнению (2) со значением $K\Omega_A^2$, полученном в непрерывном ЯМР при $\mu = 0$. На вставке показана температурная зависимость магнитной восприимчивости ³Не в нафене-243 (χ), измеренной в непрерывном ЯМР по интенсивности линии и нормированной на значение в нормальной фазе (χ_n). $\mu = 0, P = 7.1 \,\text{бар}, \omega_L/(2\pi) = 885.5 \,\text{к}\Gamma\text{ц}, T_{ca} \approx 0.94T_c$.

(vi) В обоих образцах мы не смогли создать состояние SG с помощью тех же методов, которые были успешными в экспериментах с ³Не в кремниевом или обнинском аэрогелях: после попыток создать состояние SG сдвиг при $\mu = \pi/2$ равен 0 (Рис. 7).

Первые два пункта, перечисленные выше, показывают, что в нафене реализуется одна из следующих фаз: А, полярноискаженная А или полярная. Пункты (iii) и (iv) исключают А фазу, а пункты (v) и (vi) доказывают существование чистой полярной фазы. При высоких давлениях значение K немного меньше 4/3, что вероятно вызвано поправками сильной связи. Однако, тот факт, что при всех давлениях вблизи точки сверхтекучего перехода K не зависит от пористости нафена, указывает на полярную фазу, так как маловероятно, что в полярноискаженной А фазе полярное искажение не зависит от плотности нафена. Таким образом, можно заключить, что

Рис. 7: Зависимости сдвига частоты непрерывного ЯМР от температуры в ³Не в нафене при P = 7.1 бар. Открытые символы: состояние SN. Заполненные символы: данные, полученные после попыток создать состояние SG. $\mu = 0$ (кружки), $\mu = \pi/2$ (треугольники). (a) Нафен-243. $T_{ca} \approx 0.94T_c$. Пунктирная кривая соответствует уравнению (4) с K = 1.245. (b) Нафен-90. $T_{ca} \approx 0.955T_c$. Пунктирная кривая соответствует уравнению (4) с K = 1.24. На вставке показаны температурные зависимости величин a^2 (квадратики) и b^2 (ромбики), описывающие искажение параметра порядка в общей форме (1) и рассчитанные из данных панели (b) для $\mu = 0$ с помощью уравнений (3) и (4).

в нафене-243 полярная фаза существует вплоть до самых низких температур, которые мы смогли получить в ходе экспериментов, в то время как в нафене-90 полярная фаза существует в интервале $T_p < T < T_{ca}$, а при $T = T_p$ происходит фазовый переход второго рода в полярноискаженную А фазу. При дальнейшем охлаждении величина искажения K падает, а значения для $\Delta \omega$ отклоняются от теоретической кривой для полярной фазы. На вставке к Рис. 7(b) демонстрируется зависимость величины искажения параметра порядка ESP фаз (1) от температуры, характер изменения которой качественно согласуется с поведением, которое ранее было предсказано теорией [5].

В ³Не в образцах нафена-72 и нафена-90 при достаточно низких температурах происходит фазовый переход первого рода в В-подобную сверх-

Рис. 8: Фазовые диаграммы в чистом ³Не в нафене-243 (a) и нафене-90 (b). Данные получены на охлаждении из нормальной фазы. Кружки отмечают T_{ca} , треугольники – начало перехода в В-подобную фазу. В нафене-243 не удалось определить степень полярного искажения А фазы из-за довольно большого подавления T_{ca} .

текучую фазу, сопровождаемый уменьшением магнитной восприимчивости и резким изменением сдвига частоты.

В <u>пятой главе</u> описаны методы обработки сигналов в присутствии парамагнитного ³He. Приведены результаты экспериментов при использовании разных граничных условий: в чистом ³He и при покрытии 2.5 атомными слоями ⁴He. Построены фазовые диаграммы ³He в различных образцах нафена, отличающихся по плотности (фазовые диаграммы для чистого ³He в нафене-90 и нафене-243 показаны на Рис. 8). Способы идентификации сверхтекучих фаз были аналогичны описанным раньше.

Главным результатом главы является то, что в чистом ³Не во всех образцах нафена полярная фаза уже не реализуется и наблюдается существенно большее подавление температуры сверхтекучего перехода ΔT_{ca} по сравнению со случаем покрытия 2.5 атомными слоями ⁴Не. При уменьшении пористости нафена это дополнительное подавление T_{ca} растет.

Таким образом, присутствие парамагнитного ³Не на нитях нафена кардинально меняет сверхтекучую фазовую диаграмму ³Не в нафене: при охлаждении из нормальной фазы сверхтекучий переход происходит либо в А, либо в полярноискаженную A фазу, в то время как в отсутствие твердого ³Не наблюдается переход в полярную фазу. Твердый ³Не на нитях также существенно уменьшает T_{ca} , особенно в образцах нафена низкой пористости, где анизотропия рассеяния квазичастиц ³Не выше. Наблюдаемые явления не могут быть объяснены изменением зеркальности рассеяния, так как они имеют место и при высоких давлениях, где рассеяние должно быть диффузным, независимо от присутствия или отсутствия парамагнитного ³He [16]. Поэтому можно предположить, что ключевую роль здесь играет магнитный канал рассеяния, который становится важен в анизотропной среде.

В <u>заключении</u> перечислены результаты диссертации, описаны эксперименты, которые могли бы дополнить приведенные в работе исследования, а также обсуждаются возможные пути дальнейших исследований.

Основные результаты работы.

- Измерена величина спиновой диффузии в нормальной фазе жидкого ³Не в двух образцах нафена при направлениях градиента внешнего магнитного поля вдоль и поперек оси анизотропии нафена. Обнаружена анизотропия спиновой диффузии при T ≤ 20 мK.
- Измерены фазовые диаграммы ³Не в образцах нафена различной пористости как в случае с предварительным покрытием нитей нафена пленкой ⁴Не, так и в случае чистого ³Не.
- Обнаружена и исследована методами непрерывного и импульсного ЯМР новая сверхтекучая фаза ³Не в нафене – полярная фаза.
- Показано влияние граничных условий на сверхтекучий ³Не в нафене.
 Обнаружено, что в случае с чистым ³Не реализуется либо А фаза, либо полярноискаженная А фаза, вместо полярной. При этом наблюдается заметное подавление температуры сверхтекучего перехода.

Перспективы дальнейших исследований.

Результаты, полученные в рамках настоящей диссертации, открывают новые возможности для дальнейших исследований. Недавно в полярной фазе в нафене найден такой экзотический квантовый объект, как полуквантовый вихрь [17], обнаружено эффективное взаимодействие мод продольного и поперечного резонансов [18], а также открыта спиновая сверхтекучесть [19], которая наблюдается как когерентно прецессирующее состояние, похожее на однородно прецессирующий домен в В фазе сверхтекучего ³He [20,21].

В заключение можно отметить, что явления, исследованные в диссертации, могут быть полезны при исследованиях других систем с триплетным куперовским спариванием (например, нестандартных сверхпроводников). Что же касается дальнейших исследований ³Не в аэрогелях, то имеется ряд направлений, которые требуют как теоретических, так и экспериментальных исследований:

- 1. Изучение В-подобной фазы в менее плотных образцах нафена.
- 2. Расширение фазовых диаграмм ³Не в более плотных образцах нафена в область ультранизких температур ($T \leq 0.3T_c$).
- 3. Использование спиновой сверхтекучести в полярной фазе в нафене как инструмент для изучения одноквантовых вихрей, которые сами по себе "невидимы" в экспериментах по линейному непрерывному ЯМР.
- Получение фазовых диаграмм ³Не в нафене в высоких магнитных полях, где ожидается, по аналогии с А₁ фазой, новая фаза сверхтекучего ³Не – бета фаза [22].
- 5. Исследование нормального и сверхтекучего ³Не в планарных аэрогелях, которые представляют собой систему хаотически ориентированных в плоскости нитей и соответствуют бесконечному сжатию изначально изотропного образца аэрогеля, противоположному случаю с нематическим аэрогелем.

Список публикаций

- A1 Dmitriev V.V., Melnikovsky L.A., Senin A.A., Soldatov A.A., Yudin A.N.
 Anisotropic spin diffusion in liquid ³He confined in nafen // Письма в
 ЖЭТФ. 2015. Т. 101. № 12. С. 908-912.
- A2 Dmitriev V.V., Senin A.A., Soldatov A.A., Yudin A.N. Polar phase of superfluid ³He in anisotropic aerogel // Physical Review Letters. 2015.
 V. 115. № 16. P. 165304.
- A3 Dmitriev V.V., Soldatov A.A., Yudin A.N. Effect of magnetic boundary conditions on superfluid ³He in nematic aerogel // Physical Review Letters. - 2018. - V. 120. - № 7. - P. 075301.

Литература

- Porto J.V., Parpia J.M. Superfluid ³He in aerogel // Physical Review Letters. - 1995. - V. 74. - № 23. - P. 4667-4670.
- Sprague D.T., Haard T.M., Kycia J.B., Rand M.R., Lee Y., Hamot P.J., Halperin W.P. Homogeneous equal-spin pairing superfluid state of ³He in aerogel // Physical Review Letters. – 1995. – V. 75. – № 4. – P. 661-664.
- Kunimatsu T., Sato T., Izumina K., Matsubara A., Sasaki Y., Kubota M., Ishikawa O., Mizusaki T., Bunkov Yu.M. The orientation effect on superfluid ³He in anisotropic aerogel // Письма в ЖЭТФ. 2007. Т. 86. № 3. С. 244-248.
- Dmitriev V.V., Krasnikhin D.A., Mulders N., Senin A.A., Volovik G.E., Yudin A.N. Orbital glass and spin glass states of ³He-A in aerogel // Письма в ЖЭТФ. – 2010. – Т. 91. – № 11. – С. 669-675.
- Aoyama K., Ikeda R. Pairing states of superfluid ³He in uniaxially anisotropic aerogel // Physical Review B. – 2006. – V. 73. – № 4. – P. 060504(R).
- Fomin I.A. Phenomenological phase diagram of superfluid ³He in a stretched aerogel // ЖЭТΦ. – 2014. – Т. 145. – № 5. – С. 871–876.
- Askhadullin R.Sh., Dmitriev V.V., Krasnikhin D.A., Martynov P.N., Osipov A.A., Senin A.A., Yudin A.N. Phase diagram of superfluid ³He in "nematically ordered" aerogel // Письма в ЖЭТФ. – 2012. – Т. 95. – № 6. – С. 355-360.
- Дмитриев В.В., Сенин А.А., Солдатов А.А., Суровцев Е.В., Юдин А.Н.
 В-фаза с полярным искажением в сверхтекучем ³Не в "упорядоченном" аэрогеле // ЖЭТФ. 2014. Т. 146. № 6. С. 1242-1251.
- Askhadullin R.Sh., Dmitriev V.V., Martynov P.N., Osipov A.A., Senin A.A., Yudin A.N. Anisotropic 2D Larkin-Imry-Ma state in polar distorted

ABM phase of ³He in "nematically ordered" aerogel // Письма в ЖЭТФ. - 2014. – Т. 100. – № 10. – С. 747-753.

- Askhadullin R.Sh., Dmitriev V.V., Krasnikhin D.A., Martynov P.N., Melnikovsky L.A., Osipov A.A., Senin A.A., Yudin A.N. Measurements of spin diffusion in liquid ³He in "ordered" aerogel // Journal of Physics: Conference Series. – 2012. – V. 400. – P. 012002.
- Volovik G.E. On Larkin-Imry-Ma state of ³He-A in aerogel // Journal of Low Temperature Physics. – 2008. – V. 150. – № 3-4. – P. 453-463.
- Боровик-Романов А.С., Буньков Ю.М., Дмитриев В.В., Мухарский Ю.М., Твалашвили Г.К. Криостат ядерного размагничивания и криостат растворения ³Не в ⁴Не большой хладопроизводительности // Приборы и техника эксперимента. – 1985. – № 3. – С. 185-192.
- Dmitriev V.V., Kosarev I.V., Ponarin D.V., Scheibel R. Simple nuclear demagnetization stage // Journal of Low Temperature Physics. – 1998. – V. 113. – № 5-6. – P. 945-949.
- Blaauwgeers R., Blazkova M., Človečko M., Eltsov V.B., de Graaf R., Hosio J., Krusius M., Schmoranzer D., Schoepe W., Skrbek L., Skyba P., Solntsev R.E., Zmeev D.E. Quartz tuning fork: thermometer, pressure- and viscometer for helium liquids // Journal of Low Temperature Physics. – 2007. – V. 146. – № 5-6. – P. 537-562.
- Асадчиков В.Е., Асхадуллин Р.Ш., Волков В.В., Дмитриев В.В., Китаева Н.К., Мартынов П.Н., Осипов А.А., Сенин А.А., Солдатов А.А., Чекрыгина Д.И., Юдин А.Н. Структура и свойства "нематически упорядоченных" аэрогелей // Письма в ЖЭТФ. – 2015. – Т. 101. – № 8. – С. 613-619.
- 16. Kim D., Nakagawa M., Ishikawa O., Hata T., Kodama T., Kojima H. Boundary condition on superfluid ³He as altered by ⁴He interfacial layer // Physical Review Letters. – 1993. – V. 71. – № 10. – P. 1581-1584.

- Autti S., Dmitriev V.V., Mäkinen J.T., Soldatov A.A., Volovik G.E., Yudin A.N., Zavjalov V.V., Eltsov V.B. Observation of half-quantum vortices in topological superfluid ³He // Physical Review Letters. – 2016. – V. 117. – № 25. – P. 255301.
- Dmitriev V.V., Soldatov A.A., Yudin A.N. Interaction of two magnetic resonance modes in polar phase of superfluid ³He // Письма в ЖЭТФ. – 2016. – Т. 103. – № 10. – С. 727-731.
- Autti S., Dmitriev V.V., Mäkinen J.T., Rysti J., Soldatov A.A., Volovik G.E., Yudin A.N., Eltsov V.B. Bose-Einstein condensation of magnons and spin superfluidity in the polar phase of ³He // Physical Review Letters. – 2018. – V. 121. – № 2. – P. 025303.
- Боровик-Романов А.С., Буньков Ю.М., Дмитриев В.В., Мухарский Ю.М. Исследования долгоживущего сигнала индукции в сверхтекучем ³He-В // Письма в ЖЭТФ. – 1984. – Т. 40. – № 6. – С. 256-259.
- 21. Фомин И.А. Долгоживущий сигнал индукции и пространственно неоднородная прецессия спина в ³He-B // Письма в ЖЭТФ. 1984. Т. 40. № 6. С. 260-262.
- 22. Суровцев Е.В. Фазовая диаграмма сверхтекучего ³Не в нематическом аэрогеле в сильном магнитном поле // ЖЭТФ. 2019. Т. 155. № 3. С. 564-561.